个人介绍
奇异的仿生学

主讲教师:刘燕

教师团队:共1

  • 刘燕
科学家通过对大自然和动物界里发生的许多奇迹的仔细观察,建立了一门新兴的学科——仿生学。仿生学是动物学、物理学、化学、心理学和工程技术相结合的一门独立边缘科学。本课用大量的仿生学实例深入浅出地阐述了生物与各学科的关系,带你感受生物与科技的神奇。
教师团队

刘燕

职称:教授

单位:吉林大学

【仿生学的新技术】


【信息仿生】青蛙与电子蛙眼

为了弄清楚为什么青蛙一定要等飞蛾起飞才发动攻击,仿生学家对青蛙进行了特殊的实验研究。原来,蛙眼视网膜的神经细胞分成五类,一类只对颜色起反应,另外四类只对运动目标的某个特征起反应,并能把分解出的特征信号输送到大脑视觉中枢——视顶盖。视顶盖上有四层神经细胞,第一层对运动目标的反差起反应;第二层能把目标的凸边抽取出来;第三层只看见目标的四周边缘;第四层则只管目标暗前缘的明暗变化。这四层特征就好像在四张透明纸上的画图,叠在一起,就是一个完整的图像。因此,在迅速飞动的各种形状的小动物里,青蛙可立即识别出它最喜欢吃的苍蝇和飞蛾,而对其他飞动着的东西和静止不动景物都毫无反应。

仿生学家洛克根据蛙眼的原理和结构,发明了电子蛙眼。现代战争中,敌方可能发射导弹来攻击我方目标,这时我方可以发射反导弹截击对方的导弹,但敌方为了迷惑我方,又可能发射信号来扰乱我方的视线。在战场上,敌人的飞机、坦克、舰艇发射的真假导弹都处于快速运动之中,要克敌制胜,必须及时把真假导弹区别开来。将电子蛙眼和雷达相配合,就可以像蛙眼一样,敏锐迅速地跟踪飞行中的真目标。

【控制仿生】蝙蝠与超声波

以昆虫为食的蝙蝠在不同程度上都有回声定位系统,因此有“活雷达”之称。借助这一系统,它们能在完全黑暗的环境中飞行和捕捉食物,在大量干扰下运用回声定位,发出波信号而不影响正常的呼吸。它们头部的口鼻部上长着被称作“鼻状叶”的结构,在周围还有很复杂的特殊皮肤皱褶,这是一种奇特的生物波装置,具有发射波的功能,能连续不断地发出高频率生物波。如果碰到障碍物或飞舞的昆虫时,这些生物波就能反射回来,然后由它们超凡的大耳廓所接收,使反馈的讯息在它们微细的大脑中进行分析。这种生物波探测灵敏度和分辨力极高,使它们根据回声不仅能判别方向,为自身飞行路线定位,还能辨别不同的昆虫或障碍物,进行有效的回避或追捕。蝙蝠就是靠着准确的回声定位和无比柔软的皮膜,在空中盘旋自如,甚至还能运用灵巧的曲线飞行,不断变化发出波的方向,以防止昆虫干扰它的信息系统,乘机逃脱的企图。

科学家根据蝙蝠的回声探测器制成供盲人使用的“探路仪”和“盲人眼镜”。

【拟态仿生】蝴蝶与人造卫星

遨游太空的人造卫星当受到阳光强烈辐射时,卫星温度会高达200摄氏度;而在阴影区域,卫星温度会下降至零下200摄氏度左右,这很容易烤坏或冻坏卫星上的精密仪器仪表,它一度曾使航天科学家伤透了脑筋。后来,人们从蝴蝶身上受到启迪。原来蝴蝶身体表面生长着一层细小的鳞片,这些鳞片有调节体温的作用。每当气温上升、阳光直射时,鳞片自动张开,以减少阳光的辐射角度,从而减少对阳光热能的吸收;当外界气温下降时,鳞片自动闭合,紧贴体表,让阳光直射鳞片,从而把体温控制在正常范围之内。科学家经过研究,为人造地球卫星设计了一种犹如蝴蝶鳞片般的控制系统。

【力学仿生】生物与服装

长颈鹿之所以能将血液通过长长的颈输送到头部,是由长颈鹿的血压很高。据测定,长颈鹿的血压比人的正常血压高出2倍。这样高的血压为什么不会使长颈鹿患脑溢血而死亡呢?

这与长颈鹿身体的结构有关。首先,长颈鹿血管周围的肌肉非常发达,能压缩血管,控制血流量;同时长颈鹿腿部及全身的皮肤和筋膜绷得很紧,利于下肢的血液向上回流。

科学家由此受到启示,在训练宇航员时,设置一种特殊器械,让宇航员利用这种器械每天锻炼几小时,以防止宇航员血管周围肌肉退化;在宇宙飞船升空时,科学家根据长颈鹿利用紧绷的皮肤可控制血管压力的原理,研制了飞行服——“抗荷服”。抗荷服上安有充气装置,随着飞船速度的增设,抗荷服可以充入一定量的气体,从而对血管产生一定的压力,使宇航员的血压保持正常。同时,宇航员腹部以下部位是套入抽去空气的密封装置中的,这样可以减小宇航员腿部的血压,利于身体上部的血液向下肢输送。

【化学仿生】萤火虫与冷光

萤火虫在夏日夜晚发出的光和太阳光以及各种电灯光都不一样。太阳依靠核聚变来发光,电灯依靠电流对灯丝的加热,它们在发光时都伴随有热的产生。因此,人们称它们为热光源。萤火虫发出的光,是由体内一系列特殊的化学反应引起的。由于它能100%地将能量转换成光能,不产生热量,人们就称它为冷光源。

萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高。科学家研究发现,萤火虫的发光器位于腹部。这个发光器由发光层、透明层和反射层三部分组成。发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质。在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光。萤火虫的发光,实质上是把化学能转变成光能的过程。由于萤火虫的光源来自体内的化学物质——三磷酸腺苷(简称ATP),不带辐射热,发光的效率高,几乎能将化学能全部转化为可见光,为现代电光源效率的几倍到几十倍,物理学家们认为这是非常理想的灯光。

早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化。科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素。由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯。由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作。人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用。

课程评价

提示框
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号