个人介绍
结晶学与矿物学

主讲教师:

教师团队:共1

  • 李胜荣
学校: 中国地质大学(北京)
开课院系: 地球科学与资源学院
专业大类: 地质学
开课专业: 矿物学、岩石学、矿床学

本系列课程在重视基础理论、基础知识和基本技能及教材系统性的前提下,尽可能地反映了现代矿物学向地球深部和宇宙空间拓展的前缘成果。内容包括:结晶学基础、矿物学两大部分。结晶学,又称晶体学,是研究矿物晶体的生成和变化的科学,研究内容包括外部形态的几何性质、化学组成和内部结构、物理性质以及它们相互之间的关系等。矿物学是研究矿物的化学成分,晶体结构,形态,性质,时间、空间上的分布规律,形成、演化的历史和用途的学科,是地质学的一个重要分支。本系列课程结合实例讲述了结晶学和矿物学。

教师团队

李胜荣

职称:教授、博导

单位:中国地质大学(北京)

部门:地球科学与资源学院

职位:教授

结晶学

结晶学,又称晶体学,是研究矿物晶体的生成和变化的科学,研究内容包括外部形态的几何性质、化学组成和内部结构、物理性质以及它们相互之间的关系等。

这门科学进一步形成晶体生成学、几何结晶学、晶体结构学、晶体化学、晶体物理学及数学结晶学等分支。结晶学阐明晶体各个方面的性质和规律,可用来指导对晶体的利用和人工培养。

研究晶体的外部形貌、化学组成、内部结构、物理性质、生成和变化,以及它们相互间关系的一门科学。

早期只是作为矿物学的一个分支,其研究对象亦局限于天然的矿物晶体。19世纪,研究范围逐步扩大到矿物以外的各种晶体,结晶学才逐渐脱离矿物学而成为一门独立的学科。

现代结晶学主要包括以下几分支:

晶体生成学(crystallogeny):研究天然及人工晶体的发生、成长和变化的过程与机理,以及控制和影响它们的因素。

几何结晶学(gometrical crystallography):研究晶体外表几何面体的形状及其间的规律性。

晶体结构学(crystallology):研究晶体内部结构中质点排而的规律性,以及晶体结构的不完善性。

晶体化学(crystallochemistry, 亦称结晶化学):研究晶体的化学组成与晶体结构以及晶体的物理、化学性质间关系的规律性。

晶体物理学(crystallophysics):研究晶体的各项物理性质及其产生的机理。

基本理论

普通显微成像的原理是利用光学透镜组汇聚来自待观测的物体的可见光,进行多次成像放大。然而,可见光的波长通常要远大于固体中化学键的键长和原子尺度,难以与之发生物理光学作用,因此晶体学观测学要选择波长更短的辐射源,如X射线。但一旦使用短波长辐射源,就意味着传统的“显微放大”和“实像拍摄”方法将不能(或难以)应用到晶体学研究中,因为自然界没有材料能制造出可以汇聚短波长射线的透镜。所以要研究固体中原子或离子(在晶体学中抽象成点阵)的排列方式,需要使用间接的方法——利用晶格点阵排列的空间周期性。

晶体具有高度的有序性和周期性,是分析固体微观结构的理想材料。以X射线衍射为例,被某个固体原子(或离子)的外层电子散射的X射线光子太少,构成的辐射强度不足以被仪器检测到。但由晶体中满足一定条件(布拉格定律,Bragg's law)的多个晶面上的原子(或离子)散射的X射线由于可以发生相长干涉,将可能构成足够的强度,能被照相底片或感光仪器所记录。

矿物学

研究矿物的化学成分,晶体结构,形态,性质,时间、空间上的分布规律,形成、演化的历史和用途的学科,是地质学的一个重要分支。

矿物学是研究矿物的化学成分、晶体结构、形态、性质、成因、产状、共生组合、变化条件、时间与空间上的分布规律、形成与演化的历史和用途以及它们之间关系的一门学科,是地质学的分支学科。

许多生产部门,如采矿、选冶化工、建材、农药农肥、宝石以及某些尖端科学技术都离不开矿物原料。因此,矿物学研究不仅有理论意义,而且对矿物资源的开发和应用有重要的实际意义。

发展简史

早在石器时代,人类就已知道利用多种矿物如石英、蛋白石等制作工具和饰物,以后又逐渐认识了金、银、铜、铁等若干金属及其矿石,从而过渡到铜器和铁器时代。在中国成书于战国至西汉初的《山海经》,记述了多种矿物、岩石和矿石的名称,有些名称如雄黄、金、银、垩、玉等沿用至今。

古希腊学者亚里士多德把同金属相似的矿物归为“似金属类”,他的学生泰奥弗拉斯托斯在其《石头论》中把矿物分成金属、石头和土三类。

到了18、19世纪,矿物的研究得到了多方面进展,逐步建立起理论基础,丰富了研究内容和研究方法,形成了一门学科。16世纪中叶阿格里科拉较详细地描述了矿物的形态、颜色、光泽、透明度、硬度、解理、味、嗅等特征,并把矿物与岩石区别开来。

中国李时珍在成书于1578年的《本草纲目》中描述了38种药用矿物,说明了它们的形态、性质、鉴定特征和用途。瑞典的贝采利乌斯作了大量的矿物化学成分鉴定,采用了化学式,并据此进行了矿物分类。德国化学家米切利希提出了类质同象与同质多象概念,出现了矿物学研究的化学学派。

产生于这一时期的矿物学的另一学派是结晶学派。他们在几何结晶学及晶体结构几何理论方面获得了巨大的成就。此外,索比于1857年制成显微镜的偏光装置,推进了矿物的鉴定和研究。这一方法至今被沿用和发展着。

1912年德国学者劳厄成功地进行了晶体对X射线衍射的实验,从而使晶体结构的测定成为可能,并导致矿物学研究从宏观进入到微观的新阶段。大量矿物晶体结构被揭示,建立了以成分、结构为依据的矿物的晶体化学分类。

20世纪中期以来,固体物理、量子化学理论以及波谱、电子显微分析等微区、微量分析技术被引入,使矿物学获得了新进展,建立了矿物物理学。矿物原料和矿物材料得到更广泛的开发。开展了矿物的人工合成,高温、高压实验和天然成矿作用模拟。矿物学、物理化学和地质作用的研究相结合的分支学科成因矿物学和找矿矿物学逐步形成,使矿物学在矿物资源的寻找与开发方面获得了更广泛的应用。

研究领域

矿物学还是研究矿物原料和材料的寻找、开发和应用的基础。因此,它与找矿勘探地质学、采矿学、选矿学、冶金学、材料科学的关系也很密切。此外,矿物学运用数学、化学和物理学的理论和技术,并彼此相互渗透和结合,还产生了如矿物物理学等新的边缘学科。矿物学的研究领域日益的扩大,由地壳矿物到地幔矿物和其他天体的宇宙矿物,由天然矿物到人工合成矿物;矿物学的研究内容由宏观向微观纵深发展,由主要组分到微量元素,由原子排列的平均晶体结构到局部具体的晶体结构和涉及原子内电子间及原子核的精细结构;矿物学在应用领域的迅速发展。

研究方法

野外研究方法包括矿物的野外地质产状调查和矿物样品的采集。室内研究方法很多。手标本的肉眼观察,包括双目显微镜下观察和简易化学试验,是矿物研究必要的基础。偏光和反光显微镜观察包括矿物基本光学参数的测定广泛用于矿物种的鉴定。矿物晶体形态的研究方法包括用反射测角仪进行晶体测量和用干涉显微镜、扫描电子显微镜对晶体表面微形貌的观察。检测矿物化学成分的方法有光谱分析,常规的化学分析,原子吸收光谱、激光光谱、X射线荧光光谱和极谱分析,电子探针分析,中子活化分析等。在物相分析和矿物晶体结构研究中,最常用的方法是粉晶和单晶的X射线分析,用作物相鉴定,测定晶胞参数、空间群和晶体结构。

此外,还有红外光谱用作结构分析的辅助方法,测定原子基团;以穆斯堡尔谱测定铁等的价态和配位;用可见光吸收谱作矿物颜色和内部电子构型的定量研究等。透射电子显微镜的高分辨性能可用来直接观察超微结构和晶格缺陷等,在矿物学研究中日益得到重视。为了解决某方面专门问题,还有一些专门的研究方法,如包裹体研究法,同位素研究法等。矿物作为材料,还根据需要作某方面的物理化学性能的试验(见地质仪器)。

参考教材


课程评价

课程章节
提示框
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号