个人介绍
人工智能与药物设计 中国药科大学

主讲教师:张艳敏

计算机辅助药物设计是近年来建立在药学和计算机分子模拟理论基础上的一门交叉学科。由于新药研发存在周期长、费用高和成功率低等特点,人工智能药物设计作为计算机辅助药物设计领域的一个热点方向,已被应用到药物研发的各个阶段。其作为创新药物研究与开发的一门崭新技术,它大大加快了新药设计的速度,节省了创新药物研发工作的人力和物力,使药物科学家能够以理论作指导,有目的地开发新药,是药物研发相关专业学生必须要了解和掌握的基本技能之一。本课程介绍了新药研发概述及计算机辅助药物设计与人工智能药物设计在创新药物研发中的地位和作用,及其主要策略方法和技术。介绍了生物分子的化学表征方法,基于分子表征的无监督训练方法,分子性质预测,智能分子生成,基于人工智能的药物-靶标相互作用预测,基于人工智能的药物-药物相互作用预测,生物医药知识图谱,基于深度学习的分子逆合成设计。重点讲解人工智能药物设计的意义、作用和基本研究方法,并选用部分典型成功案例进行课程实践。并结合国内外最新研究成果,介绍该学科最新进展。 Computer-aided drug design is an interdisciplinary subject based on the theory of pharmacy and computer molecular simulation technologies in recent years. Due to the long cycle, high cost and low success rate of new drug research and development, artificial intelligence drug design, as a hot topic in the field of computer-aided drug design, has been applied to all stages of drug research and development. As a brand-new technology in the research and development of innovative drugs, it greatly accelerates the design of new drugs, saves manpower and material resources in the research and development of innovative drugs, and enables pharmaceutical scientists to develop new drugs purposefully under the guidance of theory, which is one of the basic skills that must be understood and mastered by R&D-related major students. This course introduces the overview of new drug research and development, the status and role of computer-aided drug design and artificial intelligence drug design in innovative drug research and development, as well as the main strategies, methods and technologies. It mainly introduces chemical characterization methods of biomolecules, unsupervised training methods based on molecular characterization, molecular property prediction, intelligent molecule generation, drug-target interaction prediction based on artificial intelligence, drug-drug interaction prediction based on artificial intelligence, biomedical knowledge mapping, molecular inverse synthesis design based on deep learning. The significance, function and basic research methods of artificial intelligence drug design are mainly explained, and some typical successful cases are selected for course practice. Combined with the latest research results at home and abroad, the latest progress of this subject is introduced.
学校: 中国药科大学
开课院系: 理学院
开课专业: 信息管理与信息系统、生物医药数据科学
课程负责人: 张艳敏
课程英文名称: Artificial Intelligence and Drug Design
课程编号: 1212050056
学分: 3
课时: 68
课程章节 | 文件类型   | 修改时间 | 大小 | 备注
1.1 新药研发概述
文档
.pdf
2023-02-21 5.04MB
2.1.1 CADD介绍
文档
.pdf
2023-03-20 2.06MB
2.1.2 靶点晶体结构查询
文档
.pdf
2023-03-20 2.00MB
2.1.3 化合物结构绘制
文档
.pdf
2025-03-19 2.24MB
2.1.4 化合物库查询
文档
.pdf
2025-03-19 1.07MB
2.1.5 蛋白结构预测
文档
.pdf
2024-03-25 321.16KB
 
文档
.pdf
2024-03-25 954.87KB
 
附件
.zip
2024-03-25 108.25KB
2.1.6 分子对接
文档
.pdf
2024-03-25 335.79KB
 
文档
.pdf
2024-03-25 244.99KB
 
文档
.pdf
2024-03-25 216.00KB
 
文档
.pdf
2024-03-25 665.05KB
 
附件
.zip
2024-03-25 108.25KB
3.1 生物分子的化学表征方法概述
文档
.pdf
2024-04-16 694.44KB
3.4 实践
文档
.pdf
2024-04-16 608.73KB
 
附件
.smi
2024-04-16 103.55KB
 
附件
.sdf
2024-04-16 1.25KB
 
附件
.whl
2024-04-16 14.22MB
 
附件
.whl
2024-04-16 19.53MB
 
附件
.whl
2024-04-16 14.18MB
4.1 基于分子表征的无监督训练概述
文档
.pdf
2023-04-17 436.01KB
4.5 实践
文档
.pdf
2023-04-17 807.62KB
 
附件
.zip
2023-04-17 64.70MB
 
附件
.pkl
2023-04-17 73.23MB
 
附件
.csv
2023-04-17 2.68MB
 
附件
.exe
2023-04-17 51.30MB
5.1 分子性质预测概述
文档
.pptx
2024-04-29 4.49MB
5.7 实践
文档
.pptx
2024-05-06 1.28MB
 
附件
.csv
2024-05-06 145.26KB
 
附件
.csv
2024-05-06 45.84KB
6.1 智能分子生成概述
文档
.pdf
2023-05-15 1.60MB
6.5 实践
附件
.zip
2023-05-22 76.87MB
 
附件
.0
2023-05-22 33.23MB
 
附件
.100
2023-05-22 33.23MB
 
文档
.pdf
2025-05-14 963.37KB
7.1 药物靶标相互作用预测概述
文档
.pdf
2024-06-03 4.34MB
7.5 实践
附件
.rar
2024-05-28 916.29KB
 
文档
.pdf
2025-05-28 720.30KB
9.1 生物医药知识图谱概述
文档
.pdf
2024-06-03 2.10MB
9.5 实践
文档
.pdf
2024-06-03 933.70KB
11.1 综合案例实践
文档
.pdf
2025-06-04 736.85KB
提示框
取消 进入课程
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号