友情提示:同学您好,此页面仅供预览,在此页面学习不会被统计哦! 请进入学习空间后选择课程学习。
视频


最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。


进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。

数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。

正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。

哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”

影响

大数据

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。

“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。

大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……

截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。

这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。

大数据的精髓

大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。

  • 不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);

  • 不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;

  • 不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。

数据价值

大数据时代,什么最贵?

十年前,葛大爷曾说过,“21世纪什么最贵?”——“人才”,深以为然。只是,十年后的今天,大数据时代也带来了身价不断翻番的各种数据。由于急速拓展的网络带宽以及各种穿戴设备所带来的大量数据,数据的增长从未停歇,甚至呈井喷式增长。

一分钟内,微博推特上新发的数据量超过10万;社交网络“脸谱”的浏览量超过600万……

这些庞大数字,意味着什么?

它意味着,一种全新的致富手段也许就摆在面前,它的价值堪比石油和黄金。

事实上,当你仍然在把微博等社交平台当作抒情或者发议论的工具时,华尔街的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用其预判市场走势,而且取得了不俗的收益。

让我们一起来看看——他们是怎么做的。

这些数据都能干啥。具体有六大价值:

  1. 华尔街根据民众情绪抛售股票;

  2. 对冲基金依据购物网站的顾客评论,分析企业产品销售状况;

  3. 银行根据求职网站的岗位数量,推断就业率;

  4. 投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;

  5. 美国疾病控制和预防中心依据网民搜索,分析全球范围内流感等病疫的传播状况;

  6. 美国总统奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好。

可视化

“数据是新的石油。”亚马逊前任首席科学家Andreas Weigend说。Instagram以10亿美元出售之时,成立于1881年的世界最大影像产品及服务商柯达正申请破产。

大数据是如此重要,以至于其获取、储存、搜索、共享、分析,乃至可视化地呈现,都成为了当前重要的研究课题。

“当时时变幻的、海量的数据出现在眼前,是怎样一幅壮观的景象?在后台注视着这一切,会不会有接近上帝俯视人间星火的感觉?”

这个问题我曾请教过刘建国,中国著名的搜索引擎专家。刘曾主持开发过国内第一个大规模中英文搜索引擎系统“天网”。

要知道,刘建国曾任至百度的首席技术官,在这样一家每天需应对网民各种搜索请求1.7亿次(2013年约为8.77亿次)的网站中,如果只是在后台静静端坐,可能片刻都不能安心吧。百度果然在提供搜索服务之外,逐渐增添了百度指数,后又建立了基于网民搜索数据的重要产品“贴吧”及百度统计产品等。

刘建国没有直接回答这个问题,他想了很久,似乎陷入了回忆,嘴角的笑容含着诡秘。

倒是有公司已经在大数据中有接近上帝俯视的感觉,美国洛杉矶就有企业宣称,他们将全球夜景的历史数据建立模型,在过滤掉波动之后,做出了投资房地产和消费的研究报告。

在数据可视化呈现方面,我最新接收到的故事是,一位在美国思科物流部门工作的朋友,很聪明的印度裔小伙子,被Facebook高价挖角,进入其数据研究小组。他后来惊讶地发现,里面全是来自物流企业、供应链方面的技术人员和专家,“Facebook想知道,能不能用物流的角度和流程的方式,分析用户的路径和行为。”



数据量大(Volume)

第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

类型繁多(Variety)

第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

价值密度低(Value)

第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

速度快、时效高(Velocity)

第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。

既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。


大数据是信息通信技术发展积累至今,按照自身技术发展逻辑,从提高生产效率向更高级智能阶段的自然生长。无处不在的信息感知和采集终端为我们采集了海量的数据,而以云计算为代表的计算技术的不断进步,为我们提供了强大的计算能力,这就围绕个人以及组织的行为构建起了一个与物质世界相平行的数字世界。

大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面,更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉做出。

事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。

最让人吃惊的例子是,社交媒体监测平台DataSift监测了Facebook(脸谱) IPO当天Twitter上的情感倾向与Facebook股价波动的关联。在Facebook开盘前Twitter上的情感逐渐转向负面,25分钟之后Facebook的股价便开始下跌。而当Twitter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。最终当股市接近收盘、Twitter上的情感转向负面时,10分钟后Facebook的股价又开始下跌。最终的结论是:Twitter上每一次情感倾向的转向都会影响Facebook股价的波动。

这仅仅只是基于社交网络产生的大数据“预见未来”的众多案例之一,此外还有谷歌通过网民搜索行为预测流感爆发等例子。不仅在商业方面,大数据在社会建设方面的作为同样令人惊叹,智能电网、智慧交通、智慧医疗、智慧环保、智慧城市等的蓬勃兴起,都与大数据技术与应用的发展息息相关。

“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。更多地基于事实与数据做出决策,这样的思维方式,可以预见,将推动一些习惯于靠“差不多”运行的社会发生巨大变革。


一个好的企业应该未雨绸缪,从现在开始就应该着手准备,为企业的后期的数据收集和分析做好准备,企业可以从下面六个方面着手,这样当面临铺天盖地的大数据的时候,以确保企业能够快速发展,具体为下面六点。

目标

几乎每个组织都可能有源源不断的数据需要收集,无论是社交网络还是车间传感器设备,而且每个组织都有大量的数据需要处理,IT人员需要了解自己企业运营过程中都产生了什么数据,以自己的数据为基准,确定数据的范围。

准则

虽然每个企业都会产生大量数据,而且互不相同、多种多样的,这就需要企业IT人员在现在开始收集确认什么数据是企业业务需要的,找到最能反映企业业务情况的数据。

重新评估

大数据需要在服务器和存储设施中进行收集,并且大多数的企业信息管理体系结构将会发生重要大变化,IT经理则需要准备扩大他们的系统,以解决数据的不断扩大,IT经理要了解公司现有IT设施的情况,以组建处理大数据的设施为导向,避免一些不必要的设备的购买。

重视大数据技术

大数据是最近几年才兴起的词语,而并不是所有的IT人员对大数据都非常了解,例如如今的Hadoop,MapReduce,NoSQL等技术都是2013年刚兴起的技术,企业IT人员要多关注这方面的技术和工具,以确保将来能够面对大数据的时候做出正确的决定。

培训企业的员工

大多数企业最缺乏的是人才,而当大数据到临的时候,企业将会缺少这方面的采集收集分析方面的人才,对于一些公司,特别是那种人比较少的公司,工作人员面临大数据将是一种挑战,企业要在平时的时候多对员工进行这方面的培训,以确保在大数据到来时,员工也能适应相关的工作。

培养三种能力

Teradata大中华区首席执行官辛儿伦对新浪科技表示,随着大数据时代的到来,企业应该在内部培养三种能力。第一,整合企业数据的能力;第二,探索数据背后价值和制定精确行动纲领的能力;第三,进行精确快速实时行动的能力。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进企业快速发展。


友情提示:同学您好,此页面仅供预览,在此页面学习不会被统计哦! 请进入学习空间后选择课程学习。
章节测验