个人介绍
计量经济学

主讲教师:

教师团队:共1

  • 蒋岳祥
学校: 浙江大学
专业大类: 力学
开课专业: 一般力学与力学基础

本系列主要从随机现象的普遍性与风险、Introduction、Mathematics、古典线性回归模型、一元线性回归、多元线性回归、带有线性约束的多元线性回归模型及其假设检验等多方面介绍了计量经济学,计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系,本系列介绍了相关内容。

教师团队

蒋岳祥

职称:教授 博导

单位:浙江大学

部门:经济学院

职位:教授

计量经济学

计量经济学

计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系。主要内容包括理论计量经济学和应用经济计量学。理论经济计量学主要研究如何运用、改造和发展数理统计的方法,使之成为随机经济关系测定的特殊方法。应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或探索实证经济规律。

简介

计量经济学(英文:Econometrics),是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。

该分支的产生,使得经济学对于经济现象从以往只能定性研究,扩展到同时可以进行定量分析的新阶段。

“计量”的意思是“以统计方法做定量研究”,所以“量”字应读作“亮”,而不读作“良”。据说在经济学中,应用数学方法的历史可追溯到三百多年前的英国古典政治经济学的创始人威廉·配第的《政治算术》的问世(1676年)。

“计量经济学”一词,是挪威经济学家弗里希(R. Frisch)在1926年仿照“生物计量学”一词提出的。 随后1930年成立了国际计量经济学学会,在1933年创办了《计量经济学》杂志。

人们应如何理解“计量经济学”的含义?弗里希在《计量经济学》的创刊词中说到:“用数学方法探讨经济学可以从好几个方面着手,但任何一方面都不能与计量经济学混为一谈。计量经济学与经济统计学决非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分都具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活中的数量关系来说,都是必要的,但各自并非是充分条件。而三者结合起来,就有力量,这种结合便构成了计量经济学。”

后来美国著名计量经济学家克莱因也认为:计量经济学是数学、统计技术和经济分析的综合。也可以说,计量经济学不仅是指对经济现象加以测量,而且表明是根据一定的经济理论进行计量的意思。

计量经济学的基础是一整套建立在数理统计理论上的计量方法,属于计量经济学的“硬件”,计量经济学的主要用途或目的主要有两个方面:

理论检验。这是计量经济学用途最为主要的和可靠的方面。这也是计量经济学本身的一个主要内容。

预测应用。从理论研究和方法的最终目的看,预测(包括政策评价)当然是计量经济学最终任务,必须注意学习和了解,但其预测的可靠性或有效性是我们应十分注意的。

特点

模型类型:采用随机模型。 模型导向:以经济理论为导向建立模型。 模型结构:变量之间的关系表现为线性或者可以化为线性,属于因果分析模型,解释变量具有同等地位,模型具有明确的形式和参数。 数据类型:以时间序列数据或者截面数据为样本,被解释变量为服从正态分布的连续随机变量。 估计方法:仅利用样本信息,采用最小二乘法或者最大似然法估计变量。 非经典计量经济学一般指20世纪70年代以后发展的计量经济学理论、方法及应用模型,也称现代计量经济学。

相关信息

一元线性回归模型

一元线性回归模型表示如下:

yt = b0 + b1 xt +ut (1) 上式表示变量yt 和xt之间的真实关系。其中yt 称作被解释变量(或相依变量、因变量),xt称作解释变量(或独立变量、自变量),ut称作随机误差项,b0称作常数项(截距项),b1称作回归系数。

在模型 (1) 中,xt是影响yt变化的重要解释变量。b0和b1也称作回归参数。这两个量通常是未知的,需要估计。t表示序数。当t表示时间序数时,xt和yt称为时间序列数据。当t表示非时间序数时,xt和yt称为截面数据。ut则包括了除xt以外的影响yt变化的众多微小因素。ut的变化是不可控的。上述模型可以分为两部分。(1)b0 +b1 xt是非随机部分;(2)ut是随机部分。

多元线性回归模型

多元线性回归模型,(multivariable linear regression model )在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。

表达式

多元线性回归模型的一般形式为

Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n

其中 k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为

E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki

βj也被称为偏回归系数(partial regression coefficient)

古典线性回归模型

CLRM(classical linear regression model)古典线性回归模型假定:

1) 回归模型是参数线性的,但不一定是变量线性的。 参数线性,例:Y=a+bX²、Y=a+b/X

变量线性,例:Y=a+b²X

2) 解释变量(X)与扰动误差项μ不相关。

3) 扰动项的期望或均值为零   

即:E(μ|Xi)=0

4) Ui的方差为常数或同方差

即:var(Ui)= σ²

5) 无自相关,即两个误差项之间不相关

Cov(μi,μj)=0

6) 误差项和解释变量的协方差为零

7) 观测次数必须要与待估计的参数个数

8) 解释变量要有变异性

9) 假定正确设定回归模型

10) 对于多变量复回归模型,解释变量之间没有完全的线性关系

相关书籍

课程评价

课程章节
提示框
提示框
确定要报名此课程吗?
确定取消

京ICP备10040544号-2

京公网安备 11010802021885号